Future profiling of time series behavior
نویسنده
چکیده
The study of time-dependent univariate systems plays an important role in several physical and applied sciences. Time-series behaviour of such systems is mostly complex in nature and sophisticated mathematical modelling tools are needed for making accurate forecasts. These forecasts can be used for specific purposes in different domains, for example, to plan resources, develop market strategies or control/understand complex systems. In the majority of successful applications of mathematical techniques used for forecasting, single point predictions are made. In this paper, a pattern recognition technique called Pattern Modelling and Recognition System (PMRS) is explored for making multiple forecasts into the future with four different time series. These multiple forecasts define a predicted behavioural profile of these univariate systems. These predicted profiles are compared against the actual behaviour of the studied systems on a number of error measures. The results show that the structural primitives used for multiple forecasts are a very promising method of profiling the true behaviour of univariate systems.
منابع مشابه
Dynamic characterization and predictability analysis of wind speed and wind power time series in Spain wind farm
The renewable energy resources such as wind power have recently attracted more researchers’ attention. It is mainly due to the aggressive energy consumption, high pollution and cost of fossil fuels. In this era, the future fluctuations of these time series should be predicted to increase the reliability of the power network. In this paper, the dynamic characteristics and short-term predictabili...
متن کاملModeling and prediction of time-series of monthly copper prices
One of the main tasks to analyze and design a mining system is predicting the behavior exhibited by prices in the future. In this paper, the applications of different prediction methods are evaluated in econometrics and financial management fields, such as ARIMA, TGARCH, and stochastic differential equations, for the time-series of monthly copper prices. Moreover, the performance of these metho...
متن کاملInvestigating Chaos in Tehran Stock Exchange Index
Modeling and analysis of future prices has been hot topic for economic analysts in recent years. Traditionally, the complex movements in the prices are usually taken as random or stochastic process. However, they may be produced by a deterministic nonlinear process. Accuracy and efficiency of economic models in the short period forecasting is strategic and crucial for business world. Nonlinear ...
متن کاملOn the Predictability of Price Fluctuations in Tehran Stock Exchange A Correlation Dimension Estimation Approach
This paper employs a general non-linear analysis tool to analyse the nature of time series associated with the price (returns) of a particular company in Tehran Stock Exchange. It is shown that the behavior of the process associated with the price (returns) time-series of this company is weakly chaotic, and due to the non-random behavior of the process, short term prediction of stock price is p...
متن کاملOn the Predictability of Price Fluctuations in Tehran Stock Exchange A Correlation Dimension Estimation Approach
This paper employs a general non-linear analysis tool to analyse the nature of time series associated with the price (returns) of a particular company in Tehran Stock Exchange. It is shown that the behavior of the process associated with the price (returns) time-series of this company is weakly chaotic, and due to the non-random behavior of the process, short term prediction of stock price is p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Intell. Syst.
دوره 15 شماره
صفحات -
تاریخ انتشار 2000